RAS PhysiologyЖурнал высшей нервной деятельности им. И.П. Павлова I.P. Pavlov Journal of Higher Nervous Activity

  • ISSN (Print) 0044-4677
  • ISSN (Online) 3034-5316

Plastic changes in auditory perception during a course of comprehensive music and singing education by D. E. Ogorodnov: study of event-related potentials

PII
S30345316S0044467725010089-1
DOI
10.7868/S3034531625010089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 75 / Issue number 1
Pages
97-106
Abstract
The plastic changes in auditory perception during classes using the complex music and singing education method by D.E. Ogorodnov were studied. A group of 65 children, in addition to the school music program, additionally studied using the Ogorodnov’s method five times a week, and the control group of 29 people took music lessons according to the regular school program. The subjects aged 7–10 years performed the auditory attention test in the ODDBALL paradigm twice with an interval of 4 weeks. To analyze the obtained event-related potentials (ERPs), the blind source separation method was used, based on the approximate joint diagonalization of the covariance matrices calculated for the group ERPs. Decomposition of the group ERPs into hidden components made it possible to isolate the component that reveals the specific effect of training. As our studies have shown, children from the control group show adaptation to auditory stimulation carried out twice during a month. This adaptation was manifested in a significant decrease in the amplitude of the temporal component of the ERP during the repeated examination. In the group of children who studied using the Ogorodnov’s method, such adaptation was not found.
Keywords
потенциалы связанные с событиями слуховое внимание нейропластичность музыкальное воспитание метод слепого разделения источников
Date of publication
01.01.2025
Year of publication
2025
Number of purchasers
0
Views
25

References

  1. 1. Медведев С.В., Киреев М.В., Коротков А.Д. Организация нейрональных систем обеспечения целенаправленной деятельности человека: новые данные. Физиология человека. 2018. 44 (4): 131–136. doi: 10.1134/S0131164618040094.
  2. 2. Огороднов Д.Е. Музыкально-певческое воспитание детей в общеобразовательной школе. Киев: «Музична Украина», 1981. 167 с.
  3. 3. Огороднов Д.М., Евдокимов С.А., Гапонова В.Е. Исследование изменений потенциалов, связанных с событиями, в ходе музыкально-певческого воспитания по методу Д.Е. Огороднова. В сб.: Первый Национальный конгресс по когнитивным исследованиям, искусственному интеллекту и нейроинформатике. Девятая международная конференция по когнитивной науке: Сборник научных трудов. В 2 чч. Ч. 1. Москва, 2021. С. 453–456.
  4. 4. Albrecht R., Suchodoletz W., Uwer R. The development of auditory evoked dipole source activity from childhood to adulthood. Clin. Neurophysiol. 2000. Dec. 111(12):2268–76. PMID: 11090781. doi: 10.1016/s1388-2457(00)00464-8
  5. 5. Bianco R., Gold B.P., Johnson A.P., Penhune V.B. Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians. 2019. Sci. Rep. 9:17060. doi: 10.1038/s41598-019-53510-w.
  6. 6. Burgoyne A.P., Harris L.J., Hambrick D.Z. Predicting piano skill acquisition in beginners: the role of general intelligence, music aptitude, and mindset. Intelligence. 2019. 76:101383. doi: 10.1016/j.intell.2019.101383.
  7. 7. Cassidy C., Winter P., Cumbia S. An interprofessional early childhood training program: speech-language pathology and music therapy student outcomes and reflections. J. Interprof. Care. 2019. 34 (6). 819–821. https://doi.org/10.1080/13561820.2019.1696761.
  8. 8. Ip C.T., Ganz M., Ozenne B., Sluth L.B., Gram M., Viardot G., l’Hostis P., Danjou P., Knudsen G.M., Christensen S.R. Pre-intervention test-retest reliability of EEG and ERP over four recording intervals. Int. J. Psychophysiol. 2018. Dec. 134:30–43. Epub. 2018. Sep. 22. PMID: 30253197. doi: 10.1016/j.ijpsycho.2018.09.007
  9. 9. Csépe V., Honbolygó F. From psychophysiology to brain imaging: forty-five years MMN history of investigating acoustic change sensitivity. Biol. Futur. 2024. Mar. 75(1):117–128. Epub. 2024. Apr. 12. PMID: 38607546. doi: 10.100 PMID: 11090781. 7/s42977-024-00216-4
  10. 10. Luck S.J., Kappenman E.S. (Eds.) The Oxford handbook of event-related potential components. Oxford: Oxford University Press. 2012. 642 p.
  11. 11. Makeig S., Jung T.P., Bell A.J., Ghahremani D., Sejnowski T.J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA. 1997. Sep. 30; 94(20):10979–84. PMID: 9380745; PMCID: PMC23551. doi: 10.1073/pnas.94.20.10979.
  12. 12. Maris E., Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. Journal of neuroscience methods. 2007. 164. 177–90. 10.1016/j.jneumeth.2007.03.024.
  13. 13. Matuszewski J., Kossowski B., Bola Ł., Banaszkiewicz A., Papli´nska M., Gyger L. et al. Brain plasticity dynamics during tactile Braille learning in sighted subjects: multi-contrast MRI approach. NeuroImage. 2021. 227:117613. doi: 10.1016/j.neuroimage.2020.117613.
  14. 14. Münte T.F., Altenmüller E., Jäncke L. The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 2002. Jun. 3(6):473–8. PMID: 12042882. doi: 10.1038/nrn843
  15. 15. Olszewska A.M., Gaca M., Herman A.M., Jednoróg K., Marchewka A. How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Front. Neurosci. 2021. Mar. 10; 15:630829. PMID: 33776638; PMCID: PMC7987793. doi: 10.3389/fnins.2021.630829
  16. 16. Pantev C., Lappe C., Herholz S.C., Trainor L. Auditory-somatosensory integration and cortical plasticity in musical training. Ann. NY Acad. Sci. 2009. Jul. 1169:143–50. PMID: 19673770. doi: 10.1111/j.1749-6632.2009.04588.x
  17. 17. Pascual-Marqui R. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp. Clin. Pharmacol. 2002. 24. Suppl D: 5–12. PMID: 12575463.
  18. 18. Penhune V.B. “Musical expertise and brain structure: the causes and consequences of training” in The Oxford Handbook of Music and the Brain, eds M. H. Thaut, and D. A. Hodges (Oxford: Oxford University Press). 2019. 417–438. doi: 10.1093/oxfordhb/9780198804123.013.17.
  19. 19. Pernet C.R., Latinus M., Nichols T.E., Rousselet G.A. Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study. J. Neurosci Methods. 2015. Jul. 30. 250:85–93. Epub. 2014. Aug. 13. PMID: 25128255; PMCID: PMC4510917. doi: 10.1016/j.jneumeth.2014.08.003
  20. 20. Ponomarev V.A., Kropotov J.D. Second Order Blind Identification of Event Related Potentials Sources. Brain Topogr. 2023. 36. 797–815. https://doi.org/10.1007/s10548-023-00998-1.
  21. 21. Proverbio A.M., Russo F. Multimodal recognition of emotions in music and language. Psychol. Music. January 2022. Vol. 50. Issue 1. Pр. 54–68. http://dx.doi.org/10.1177/0305735620978697.
  22. 22. Räikkönen K., Birkás E., Horváth J., Gervai J., Winkler I. Test-retest reliability of auditory ERP components in healthy 6-year-old children. Neuroreport. 2003. Nov. 14;14(16):2121–5. PMID: 14600509. doi: 10.1097/00001756-200311140-00022
  23. 23. Ruhnau P., Herrmann B., Maess B., Schröger E. Maturation of obligatory auditory responses and their neural sources: evidence from EEG and MEG. Neuroimage. 2011. Sep. 15; 58 (2):630–9. Epub. 2011. Jun. 25. PMID: 21726651. doi: 10.1016/j.neuroimage.2011.06.050
  24. 24. Schellenberg E.G. Correlation = causation? Music training, psychology, and neuroscience. Psychol. Aesthet. Creat. Arts. 2020. 14, 475–480.
  25. 25. Tomé D., Barbosa F., Nowak K., Marques-Teixeira J. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J. Neural. Transm. (Vienna). 2015. Mar. 122(3):375–391. Epub. 2014. Jun. 25. PMID: 24961573. doi: 10.1007/s00702-014-1258-3
  26. 26. Vigario R. Extraction of ocular artifacts from EEG using independent component analysis. Electroenceph. Clin. Neurophysiol. 1997. V. 103. № 3. P. 395.
  27. 27. Wisniewski M.G., Joyner C.N., Zakrzewski A.C., Makeig S. Finding tau rhythms in EEG: An independent component analysis approach. Hum. Brain Mapp. 2024. Feb. 1; 45(2):e26572. PMID: 38339905; PMCID: PMC10823759. doi: 10.1002/hbm.26572
  28. 28. Zaatar M.T., Alhakim K., Enayeh M., Tamer R. The transformative power of music: Insights into neuroplasticity, health, and disease. Brain Behav. Immun. Health. 2023. Dec. 12;35:100716. PMID: 38178844; PMCID: PMC10765015. doi: 10.1016/j.bbih.2023.100716
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library